Genetics
Curriculum guideline
- Instructor tutoring and lectures
- Discussion groups
- Practical applications and lab exercises
- Self-study via print or online materials
- Reading and problem solving assignments
This course involves four hours per week of classroom instruction and three hours per week of laboratory activity. Classroom work will include lectures and tutorials, and is integrated with textbook, scientific journal readings and problem assignments. The laboratory work is designed to complement the theory content of the course, to develop both specific and general lab skills, and to provide exposure to a variety of organisms commonly used as model systems for the study of genetics.
Mechanics of Inheritance, including:
- mitosis
- meiosis
- life cycles
- crossing-over
Mendelian Inheritance, including:
- monohybrid inheritance and the Law of Segregation
- dihybrid inheritance and the Law of Independent Assortment
- allelic relationships
- use of testcrosses
Probability and Statistics, including:
- solving genetic problems using probability rules
- use of the Chi Square test
Non-Mendelian Inheritance, including:
- linkage
- sex-linked inheritance
- sex-influenced inheritance
- sex-limited inheritance
- gene interactions (including epistasis, complementation, duplicate genes)
- multiple allelism
- multigenic inheritance
- inheritance of quantitative (multifactorial) traits
- extra-chromosomal inheritance
Chromosome mapping in eukaryotes, including:
- 2 point testcross
- 3 point testcross
Sex determination and sex differentiation, including:
- the XY system
- the ZW system
- the XO system
- the haplo-diploid system
Dosage compensation
Changes in Chromosome Number, including:
- aneuploidy
- polyploidy
Changes in Chromosome Structure, including:
- duplication
- deletion
- inversion
- translocations (pericentric and paracentric)
Gene mutation and mutagenesis
Nucleic acid structure and replication
Protein Synthesis
- transcription
- translation
Control of gene expression
- in prokaryotes
- in eukaryotes
Microbial genetics, including:
- prototrophs and auxotrophs
- replica plating
- transformation, transduction and conjugation
- gene mapping
Viral genetics, including:
- DNA Viruses
- retroviruses
Transposable Elements, including:
- DNA transposons
- retrotransposons
Population genetics and evolution, including:
- Hardy-Weinberg equilibrium
- effects of genetic drift and selection
Laboratory Exercises
- mitosis in onion roots
- chi square (corn crosses)
- gene mapping in Drosophila
- polytene chromosomes
- plant viruses
- population genetics (models of drift and selection; field study)
Upon completion of this course, students will be able to demonstrate an understanding of the principles of classical and modern genetics, including being able to:
- Describe the physical basis of heredity.
- Describe the experimental basis of Mendelian inheritance.
- Describe sex-determining mechanisms in a wide variety of organisms.
- Describe non-Mendelian inheritance, including linkage, sex-linkage, sex-influenced inheritance, sex-limited inheritance, multiple allelism, polygenic inheritance, and extra-chromosomal inheritance.
- Interpret pedigrees to determine modes of inheritance of genetic anomalies in humans.
- Derive chromosome maps by a variety of techniques, including the analysis of:
- testcross data in higher organisms
- conjugation, transduction and transformation experiments in bacteria
- Describe the cytological and biochemical basis of mutation and mutagenesis.
- Describe the structure, replication, and functions of nucleic acids.
- Describe the process of protein synthesis and the control of protein synthesis in bacteria and in higher organisms.
- Describe the genetic control of metabolism.
- Describe the genetics of populations, including Hardy-Weinberg equilibrium, genetic drift, the effects of selection on allele frequencies and the evolutionary implications of population genetics.
- Perform and interpret genetic experiments with a variety of organisms.
- Describe the genetic basis of evolutionary theory.
- Use general principles of genetics to discuss current issues.
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on the following:
Assignments and tests |
10-20% |
Oral presentation | 0-5% |
Midterm exams (2) | 25-35% |
Final comprehensive exam | 25-35% |
Lab reports | 25-30% |
Total | 100% |
Consult the Douglas College Bookstore for the latest required textbooks and materials. Example textbooks and materials may include:
Klum, WS, Cummings, MR, Spencer, CA and Palladino MA. (2014). Concepts of Genetics, (current edition). Pearson Education, USA.
Courses listed here must be completed either prior to or simultaneously with this course:
- No corequisite courses
Courses listed here are equivalent to this course and cannot be taken for further credit:
- No equivalency courses