Lecture
- Sets of numbers: integers, rationals, reals
- Basic algebraic techniques - absolute values, exponents, factoring methods, rational expressions
- Quadratic, polynomial, rational, and absolute value equations
- Inequalities
- Functions and relations; domains and ranges
- Graphing of linear, quadratic, and absolute value functions
- Mathematical modeling (story problems)
- Basic geometric formulas
- Systems of equations in 2- and 3-variables
- Radicals, radical forms, and fractional exponents; radical equations
At the end of this course, the successful student will have reviewed and strengthened their algebraic skills and have a level of algebraic proficiency which will allow them to continue their mathematical studies to an in-depth study of functions and their associated graphs (specifically, precalculus courses).
At the end of this course, the successful student will be able to:
- distinguish between different sets of real numbers
- appropriately use the set operations of intersection and union and the conditions of “and” and “or”
- apply the concept of a solution set using set builder and interval notations
- work with two-dimensional Cartesian co-ordinate system
- work with function notation
- determine if an equation in two variables represents a function or simply a relation
- determine the domain and range of a function
- correctly apply properties of commutativity, associativity, distribution, inequality, equality and absolute value, and use the laws of exponents in the course of simplifying expressions and solving inequalities and equations
- simplify linear, polynomial, absolute value, rational, and radical expressions
- inter-convert radical and fractional exponent expressions
- solve linear, quadratic, factorable polynomial, absolute value, rational, and radical equations, check solution(s) and express solution sets using a variety of notations
- solve linear and simple absolute value inequalities and express solutions sets using a variety of notations
- solve quadratic and quadratic form equations by factoring, completing the square or using the quadratic formula
- factor polynomials using grouping, common factors, difference of squares, sum and difference of cubes
- add, subtract, multiply and divide polynomials, including synthetic division
- translate a problem given in English (story form) into an associated algebraic form, communicate clearly the relationship between the model and the original problem, articulate any restrictions on solutions, solve the algebraic problem and use the solution to answer the original question
- find volumes, areas and perimeters of selected geometric figures and employ the results in the context of story/applied problems
- use the Pythagorean theorem to solve story problems and to calculate distances
- find midpoints of line segments
- solve linear systems of equations (both two-by-two and three-by-three systems) algebraically and graphically
- graph linear equations in general, slope-intercept and slope-point forms, and find linear equations for given graphs
- identify parallel and perpendicular lines
- graph simple absolute value and radical functions
- graph quadratic functions (parabolas) by completing the square
Optional additional subjects, as time allows:
- basic concepts of conic sections: circles, parabolas, ellipses, and hyperbolas
- algebraic and graphical solutions of systems of inequalities in two dimensions
- elements of linear programming
- polynomial and rational function inequalities and their solutions
- supplementary topics in geometry
Evaluation will be carried out in accordance with Douglas College policy. The instructor will present a written course outline with specific evaluation criteria at the beginning of the semester. Evaluation will be based on some of the following:
Weekly quizzes | 0-40% |
Term tests | 20-70% |
Assignments | 0-15% |
Attendance | 0-5% |
Class participation | 0-5% |
Final exam | 30-40% |
Textbook may vary by semester. Check the College bookstore for the required text. Sample text:
Sullivan and Struve, Intermediate Algebra, Current Edition, Prentice Hall.
BC Precalculus 11 with a C or better; or,
BC Precalculus 12 with a C or better; or,
MATU 0411 with a C- or better; or,
A score of 15 or higher on the Douglas College Precalculus Placement Test.